1730

Second kind odd radial Mathieu function
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Where p € {0, 1} and J,,, Y,, are the conventional Bessel functions.

The normalization constants are
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On The Modal Expansion of Resonator Field in the
Source Region

A. S. Omar, E. Jensen, and S. Liitgert

Abstract—Two field expansions for the electromagnetic field radiated
by electric and magnetic currents in a cavity resonator are presented.
The first utilizes the cavity resonant modes only, while the other uti-
lizes, in addition, the irrotational modes. The first expansion is shown
to be more suitable if the exciting currents have volume distributions.
On the other hand, the second expansion is more suitable if the reso-
nator contains surface or filamentary current distributions. Typical ex-
amples are given to demonstrate the convergence behavior of the two
expansions near and within the source region.

INTRODUCTION

In a field-theoretical analysis of microwave tubes, e.g., kly-
strons, magnetrons, travelling wave tubes, gyrotrons, and oro-
trons, one can divide the describing equations of the structure into
two systems of equations. The first system expresses the electro-
magnetic field in terms of the exciting current(s). It is just Max-
well’s equations with source terms. This system is linear if a small
signal approximation is considered or if the nonlinear materials are
replaced by polarization currents which can be added to the exci-
tation ones. The second system describes the influence of the elec-
tromagnetic field on the motion of the electrons. It expresses then
the exciting current(s) in terms of the excited field. This system is
usually nonlinear except for the small signal analysis. The two sys-
tems must be solved simultaneously. They can be considered to
represent a feedback system with a linear forward transmission and
a nonlinear backward transmission. Well-established methods of
control theory can consequently be applied to this feedback system
in order to study the featuring characteristics like stability, starting
and sustaining oscillation conditions, modulation, noise perfor-
mance, etc.

The analysis of the linear system can be done in either time or
frequency domain. In this paper, the analysis will be conducted in
frequency domain. If time-domain information are needed, e.g.,
for the nonlinear system, an inverse Fourier transform must be
made. Because the interaction between the electron beam and the
electromagnetic wave in most of the microwave tubes takes place
inside a cavity resonator, which may be either partially or com-
pletely shielded, the excited electromagnetic field can be expressed
as expansions in terms of the empty cavity modes. These modes
can be classified into divergence-free modes (which are the cavity
resonant modes) and curl-free (or irrotational) modes.

The accuracy and convergence of these expansions is particu-
larly important within the electron beam, i.e.. in the source region,
because accurate expressions for the electromagnetic field within
the beam are necessary for the accurate solution of the nonlinear
system (i.e., the electrons’ equations of motion). It is the aim of
this letter to study the different possible expansions along with their
accuracy and convergence in the source region.
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Fig. 1. A cavity resonator excited by an electric current J and a magnetic
current M.

Basic FORMULATION

Consider the cavity resonator shown in Fig. 1. The closed sur-
face § is assumed to be perfectly conducting. Coupling apertures
have been short-circuited are replaced by equivalent magnetic sur-
face currents. The cavity is excited by an electric current J and a
magnetic current M. These include convection currents (electron
beam), polarization currents, which replace dielectric or magnetic
inserts, as well as equivalent surface currents, which replace cou-
pling apertures or metal inserts.

The cavity can now be considered empty. It has a tribly-infinite
set of resonant modes {E,, H,}, which are characterized by

Vv x En = —jwnl"oHn (1)
V X H, = jo,€E, (1b)
€ SVE’[ : E;: av = p, SVH’[ : H;ln dv = W, b, (1)

where w, is the resonant frequency of the nth resonant mode, and
0, 1s the Kronecker delta.

The set of resonant modes, which are divergence-free, is not a
complete one. For the expansion of an arbitrary electromagnetic
field inside the cavity, one has to complete the resonant modes with
the irrotational modes {F,, G,} [1], which are characterized by

F,=Ve, i xFls=0 (2a)
€& SV F, - F*aV = U, ,n (2b)
G, =V, R G,ls=0 (3a)
o SV G, G,dV=V,5, (3b)

The electromagnetic field inside the resonator satisfies Maxwell’s

equations
VXE=—-—M + jop,H) (4a)

V X H=J + jwe,E (4b)

A. Field Expansion in Terms of { E,} and { H,}

The two quantities J + jwe, E and M + jou,H are divergence-
free. They can then be expanded with respect to {E,} and {H,},
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respectively, by

J + joe,E = jwe, 2

a
" E, 5a
", oo

b
M + jop,H = jop, 22 —=H, 5b
Jo, Joro & (5b)

Wa

Substituting (5) in (4) and making use of (1) results in

a, w, w, W CSze) 6
b, © —wilw wllCP® ©

where
-1
cY = S J-Efav (7a)
JoNW,
-1
CP = —== S M- HYav (7b)
JoNW,
B. Field Expansion in Terms of { E,, F,} and {H,, G, }
The electric and magnetic fields are now expanded as
2 t;
E=2X—7E,+ X-=F 8a
N N (8a)
h,
= 8b
" r——Wn " ‘/Vn ( )

Substituting the above expansions in (4) and making use of (1),

(2), and (3) results in
wa || C¥
0 |l c® )]

I:e,, w [m
=73 2
hn @ T W, [ w,

—1 S‘
= J: Ffdv (10a)
2 jwNU, Jv (10a)
-1 S
M- GFadv 10b
joV, Jv (100

C. Excitation by an Electric Current Only (M = 0)

In order to simplify the analysis, we assume that the cavity is
excited by an electric current J only. This results in the following
expansions for the electric and magnetic fields:

w2 C(e) J

E = Z " (11
_wn\/_,, jweo ‘ a)

2 C(E) f
= Z E, + Z 2 (11b
ey AR L UL

CY y

Z} 2 O 12
H= —wn\/——,: ( )

Comparing the two E,-series in (11a) and (11b), one can easily
show that the convergence in (11a) is worse than that in (11b) (note
that w2 ~ n* as n — o). The advantage of (11a), on the other
hand, is the absence of the set {F,} which must additionally be

_ determined.
Let us investigate now the case with the exciting current J being

a surface distribution. The term (J /jwe,) in (11a) has then a dirac-
delta dependence in the direction normal to the surface current. The
electric field, on the other hand, must be continuous across the
current sheet. This means that a part of the E,-series in (11a) must
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compensate the dirac-delta dependence of the term (J /jwe, ), while
the rest of the series converges to the actual (continuous) electric
field. The E,-series in (11a) near and across the current sheet does
consequently not converge. A very strong Gibb’s effect accompa-
nies the series there [2]. The situation is much worse if the current
source is a filamentary one.

If the convergence of the series in (12) is investigated, it is easily
shown that the series has a step discontinuity at the current sheet
(the discontinuity in the tangential magnetic field is equal to the
surface electric current). The E,-series in (11b), which converges
better than that in (12) (note that w, ~ n as n = o), converges
uniformly across the current sheet. The F,-series in (11b) also con-
verges uniformly across the current sheet because the sum of the
two series (the electric field) is continous there.

We can conclude that the two series in (11b) converge uniformly
within the source region, even if the source were a current sheet or
a current filament. On the other hand, the series in (11a) converges
only if the current source is a well-behaved ‘‘volume’” distribution.
For the latter case, the expansion of the electric field in (11a) is
advantageous because it is free from the set {F, }, although its con-
vergence is still slower than that of the two series in (11b).

NUMERICAL RESULTS

In order to compare the convergence of the two series in (11a)
and (11b), the excitation of a rectangular cavity resonator has been
investigated. The cartesian coordinates system is chosen such that
the points (0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (1.0, 0.5, 0.0), (0.0,
0.5,0.0), (0.0,0.0, 1.2), (1.0, 0.0, 1.2), (1.0, 0.5, 1.2), and (0.0,
0.5, 1.2) define the vertices of the cavity. The y-directed exciting
current is rotationally symmetric with respect to the line connecting
the two points (0.5, 0.0, 0.6) and (0.5, 0.5, 0.6). It is given by

_ 2 _ 2
J, = ——1—2 cos (2my) exp <— & =~ 0.5 +2 =06 > (13)
. o g

Two cases have been investigated. The first with ¢ = 10™*, which
resembles a y-directed filamentary current in the middle of the cav-
ity. Fig. 2(a) shows the x-dependence of E, aty = 0.15 and z =
0.6 once according to (11a), which is the solid line, and once ac-
cording to (11b), which is the dashed line. The operating frequency
has been chosen to be much smaller than the resonance frequency
of the lowest resonant mode (TEj;, ). The expansion according to
(11a) shows a strong Gibb’s effect and hence does not converge at
all. On the other hand, the expansion according to (11b) is a well-
behaved function. Fig. 2(b) is similar to Fig. 2(a) but with the
operating frequency very near to the resonance frequency of the
TEf,,-resonant mode. The field expansion according to (11b) (the
dashed line) converges to the field distribution of the
TE{ ;-resonant mode (which is a half sine-wave). The expansion
according to (11a) (the solid line) converges to the same distribu-
tion only far from the location of the filamentary source. Near and
at the source, the expansion according to (11a) shows a strong
Gibb’s effect and does not converge.
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Fig. 2. The x-dependence of E, excited by a filamentary current J,
(a) Par from resonance. (b) Very near to resonance. according to
(11a). ----—-- according to (11b).
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Fig. 3. The x-dependence of E, excited by a y-directed current J, with a
Gaussian distribution in the x-z-plane. (a) Far from resonance. (b) Very
near to resonance. according to (11a). ——-—--- according to (11b).

The second case corresponds to ¢ = 0.05, which resembles a
Gaussian volume distribution. Fig. 3(a) and Fig. 3(b) show the
field expansions corresponding to an operating frequency which is
far from and very near to the resonance frequency of the
TEj,-resonant mode, respectively. For this case, the two expan-
sions according to (11a) (the solid line) and according to (11b) (the
dashed line) are indistinguishable, which means that the conver-
gence of the two series is quite similar.
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